HW 3 – Integrating FactorsCloses Wed

2.3 - Applications

Entry Task: Handout/Discuss My Application Packet Read example 1 from my lecture handout.

Step 1: Total Volume?

Step 2: Rate In? Rate Out? Initial cond?

1. Mixing problems

 $y(t) = \text{amount of substance} \qquad Step 3: Solve$ V(t) = volume of water in container $\frac{dy}{dt} =$ (conc. in)(flow in) - (conc.)(flow out)

$$\frac{dy}{dt} = ()() - \left(\frac{y}{V(t)}\right)()$$

Hint: Let the units help you.

Temperature

The study of temperature is a big subject. But one common basic assumption is Newton's Law of Cooling. T(t) = temperature of an object at time t

T_s = temperature of surroundings

"The rate of change of temperature for an object is proportional to the difference between the temp of the object and the temp of its surroundings"

k = `proportionality constant' it depends on the object, the surroundings and the units.
(You either look it up in a physics/engineering reference book or you experimentally compute it).

Savings and Loans

Many bank and loan accounts all have the same general set up: The account has a balance, *A(t)*, that is changing in two ways:

1. Regular deposits or withdrawals/payments of

± K dollars/year

 Compound interest with a decimal rate of *r* annually (compounded continuously) In other words, the amount of interest added each year is approximately

r A dollars/year.

If A(t) = balance after t years, then $\frac{dA}{dt}$ = change in balance per year = amount added from interest \pm amount deposited/withdrawn

Motion (Air Resistance) Newton's Second Law: Force = (Mass)(Acceleration)

So if v(t) = velocity and m = mass, then Force = $m \frac{dv}{dt}$

Force due to gravity has magnitude mg in the downward direction.

Force due to air resistance has magnitude ??? in the direction opposite velocity.

