HW 3 - Integrating FactorsCloses Wed

2.3-Applications

Entry Task:
Handout/Discuss My Application Packet
Step 2: Rate In? Rate Out? Initial cond?

1. Mixing problems
$y(t)=$ amount of substance
Step 3: Solve

Read example 1 from my lecture handout.

Step 1: Total Volume?
$\mathrm{V}(\mathrm{t})=$ volume of water in container

$$
\frac{d y}{d t}=
$$

(conc.in) $($ flow in $)-($ conc. $)($ flow out $)$

$$
\frac{d y}{d t}=(\quad)(\quad)-\left(\frac{y}{V(t)}\right)(\quad)
$$

Hint: Let the units help you.
$\frac{d y}{d t}=$

Temperature

The study of temperature is a big subject. But one common basic assumption is Newton's Law of Cooling.
$\mathrm{T}(\mathrm{t})=$ temperature of an object at time t
$\mathrm{T}_{\mathrm{s}}=$ temperature of surroundings
"The rate of change of temperature for an object is proportional to the difference between the temp of the object and the temp of its surroundings"
$\mathrm{k}=$ 'proportionality constant’ it depends on the object, the surroundings and the units. (You either look it up in a physics/engineering reference book or you experimentally compute it).

Savings and Loans

Many bank and loan accounts all have the same general set up:
The account has a balance, $A(t)$, that is changing in two ways:

1. Regular deposits or withdrawals/payments of

$$
\pm K \quad \text { dollars/year }
$$

2. Compound interest with a decimal rate of r annually (compounded continuously) In other words, the amount of interest added each year is approximately rA dollars/year.

If $A(t)=$ balance after t years, then
$\frac{d A}{d t}=$ change in balance per year
$=$ amount added from interest
\pm amount deposited/withdrawn

Motion (Air Resistance)

Newton's Second Law:
Force $=$ (Mass)(Acceleration)

So if $v(t)=$ velocity and $m=$ mass, then

$$
\text { Force }=m \frac{d v}{d t}
$$

Force due to gravity has magnitude mg in the downward direction.

Force due to air resistance has
magnitude ??? in the direction opposite velocity.

